Draft Topic Area Levels
REUSE BREAKOUT SESSION — Oct. 23, 2008

1 Portability

The levels below are defined relative to the usasst likely to benefit from the software and the
contexts that they are most likely to have.

RRL 1 —The software is not portable

No source code or instructions for customizatian @ovided. Executable binaries are provided
and there are known severe limitations for runriran the hardware or operating system. There
is only minimal information on installation or uséhere is no information on porting to another
platform or application.

RRL 2 — Some parts of the software may be portable

Some source code is provided with some internal extdrnal documentation. Binaries are
provided and there is some documentation on howmdtall the software. There is no useful
information on porting. Porting is prohibitively gensive, but some portions (e.g. modules,
functions) of the code may be portable.

RRL 3 — The software is only portable with significant tos

The complete source code is available, withoutregtedependencies that are portable, but the
software cannot be ported without significant clemndgo the software or the target context.
Documentation on porting the code to another platfor application is missing or deficient.
Porting would not be practical or cost effective.

RRL 4 — The software may be portable at a reasonable cost

The cost benefits of using the software slightlywaigh the cost of developing new software.
Documentation is barely sufficient, but may contawmme useful information on porting to
another platform or application. Porting will nohekess require significant effort. Only at this
level is it generally worth considering porting thaftware.

RRL 5 — The software is moderately portable

The software can be ported with only relatively Brohanges necessary to the context or the
software itself. Documentation on porting existd @complete, but requires considerable effort
and expertise. Some rudimentary understandingeotitiderlying software or the target system
may be necessary.

RRL 6 - The software is portable
The software can be ported to most major systemisowi modification. The documentation,
however, addresses porting to a large number aésgsthat are identified. Any modifications
needed to port the software to these systems dral@geribed in the documentation and would
be relatively easy to implement.



RRL 7 — The software is highly portable

The software can be ported to all but the most igsor obsolete systems without modification.
The documentation is complete and thorough. No géso the software are necessary and the
effort to port the software is minimal.

RRL 9 — The software is completely portable

The software can be ported to all systems sinagng on an application layer rather than on the
underlying operating system layer. Such softwarerigen in languages Java, C#, etc. In theory
at least, the software will run on any system inclwhthe appropriate application layer has been
installed.

2 Extensibility

RRL 1 — No ability to extend or modify program behavior

Source code is not available; execution parametsrsot be changed, and/or it is not possible to
extend the functionality of the software, evendpplication contexts similar to the original
application domain.

RRL 2 —Very difficult to extend the software system, evenapplication contexts similar to
the original application domain

The software was not designed with extensibilitynimd. While some level of documentation
and/or source code is available, it is extremetfyadilt to extend the software. For cases where
source code is available, the logical flow of cougy be hard to follow, with few (if any)
comments, and little to no cohesion.

RRL 3 — Extending the software is difficult, even for apption contexts similar to the original
application domain

Minimal consideration to extensibility is includedthe design, through use of methods such as
object-oriented design or other tools which provatgcal cohesion. Where source code is
available, the software has some structure, butmasg a high number of independent logical
paths, minimal comments and documentation, andimvalegree of cohesion.

RRL 4 — Some extensibility is possible through configunatahanges and/or moderate software
modification

Consideration to extensibility to some range ofl@pgion contexts is included in the design
though means such as a) use of configuration filesolation of configuration parameters and
constants in clearly identified sections of souwrade (distinct from logic and display code), c)
some documentation of the effects of changes tetparameters and the allowed values for
these parameters, and/or d) effective use of pnogriag practices designed to enable reuse,
such as object oriented design.



RRL 5 — Consideration for future extensibility designedittie system for a moderate range of
application contexts; extensibility approach defimad at least partially documented

The procedures for extending the software are ddfimwhether by source code modification
(e.g., object-oriented design) or through the miovi of some type of extension functionality
(e.g., callback hooks or scripting capabilitieshéké source code modification is part of the
extension plan, the software is well-structureds danoderate to high level of cohesion, and has
configuration elements clearly separated from l@gid display elements. Internal and external
documentation are sufficient to allow an experiehgegrammer to understand program flow
and logic with moderate effort.

RRL 6 —Designed to allow extensibility across a moderaterbad range of application
contexts, provides many points of extensibilityd @athorough and detailed extensibility plan
exists

The extensibility capability for the software islixgefined, sufficient to enable an experienced
developer generally familiar with the project tdend the software. That documentation should
include clear information about the range of agtian contexts to which the software can be
extended as well as potential limitations on exjmmns

RRL 7 —Demonstrated to be extensible by an external dpuetat team in a similar context
The software has been extended and applied toiksapplication context to the original. This
extension may have been done by an external tesng estension documentation, by may have
involved substantial assistance from the origiraledlopment team members.

RRL 8 — Demonstrated extensibility on an external progrelear approach for modifying and
extending features across a broad range of appicdbmains

The software has been extended by at least on@ gifausers outside the original development
group using existing documentation and with nosagece from the original development team.

RRL 9 — Demonstrated extensibility in multiple scenario®vides specific documentation and
features to build extensions which are used a@aasge of domains by multiple user groups
The software is regularly extended externally bgrssacross multiple applications using
available documentation. There may be a librarylahie of user-generated content for
extensions.

3 Documentation

[Consider black box in some of places where itosexplicitly mentioned.]

RRL 1 — Little or no internal or external documentatioraidable
Source code is available, with little or no usaéfiiérnal or external documentation.

RRL 2 — Partially to fully commented source code available
Source code is available and fully commented, butther documentation is provided. It may be
challenging for a good programmer to determine tmveuse the software.



RRL 3 — Basic external documentation for sophisticatedsuaeailable

For example, a README file, a “man” page, or comuhéine usage examples. This type of
documentation would be sufficient for a sophisechtiser to figure out how to use the software,
but probably not a general user.

RRL 4 — Reference manual available

Reference manual provides complete documentatiarserof the software, but may not be
easily approached or accessed by general userg &eumentation relevant to customization
is available.

RRL 5 — User manual available
User manual allows a “normal” or general user tdaratand how to use and possibly customize
aspects of the software.

RRL 6 — Tutorials available
Step-by-step walkthroughs of how the software Eamized and used in various scenarios,
demos, etc. This makes it very easy to underseaciitthe software and use it in a new project.

RRL 7 — Interface guide available
Documentation describes how to customize and exterthe software with other software,
programmatic interfaces, APIs, etc., so that itiwemme easily be embedded in a larger system.

RRL 8 — Extension guide and/or design/developers guidédadla

An extension guide provides information on howuastomize and add to the software, add
plugins and the like, use internal programming lamges”, etc. A design/developers guide
provides a description of internals, design docuatem, internal documentation, etc. that is
sufficient for someone “skilled in the art” to cabute to the development of the software or
take over maintenance of the software.

RRL 9 — Documentation on design, customization, testing, aad reuse is available

All stages of the software engineering lifecycle ally documented. This includes design and
review artifacts, testing artifacts, customizatiangd regression tests. The documentation
provided is easy to read/access and is approgaatifferent categories of users.

4 Support

RRL 1 — No support available
The original developer of the code is not knowrt, lnoatable, or is refusing support.

RRL 2 — Minimal support available
There is known contact information available fog tiriginal developer(s) and they are willing to
provide minimal, occasional support.



RRL 3 — Some support available

Contact information is available and there is dimghess to provide some support infrequently,
without guarantees. This may include things sughragiding makefiles or different flavors of
the code for different contexts.

RRL 4 — Moderate systematic support is available
Latest updates/patches are usually made avail@bfgort is available, but may be intermittent.

RRL 5 — Support provided by an informal user community
There is an informal user community that providesveers, for example, via a Web site FAQ.

RRL 6 — Formal support available
Support is centralized in a web site containingvaht resources, answers to FAQ, and other
useful information.

RRL 7 — Organized/defined support by developer available
There is organized and defined support by the dgeelwith email/telephone help desk and
links to case studies and other relevant infornrmatiNo continuity of support implied.

RRL 8 — Support available by the organization that devetbijhe asset

The support is by an organization and is well defiwith frequent updates, releases, etc., and
help desk. Continuity of support is implied. Suppuoay be free or fee-based and may be
offered by a third party.

RRL 9 — Large user community with well-defined supportitalde

This may include resources such as a help deslelasite for the latest information, an active
discussion group willing to answer questions, feagyatches and updates as well as
consolidation of changes by the community. One gtarwould be the Linux operating system.

5 Packaging

RRL 1 — Software or executable available only, no paakagi
Inadequate or no documentation and no auto-bust#liifacility is available.

RRL 3 — Detailed installation instructions available
System includes auto-build feature, but is buittdgarticular operating system.

RRL 5 — Software is easily configurable for different caxts
For example, locations of resources (files, dineesy URLS) are configurable. All
configuration-specific information is centralized.

RRL 7 — OS-detect and auto-build for supported platfornelable
Operating system detection configuration filesarailable. Packaging includes auto-build for
supported OS platforms and suite of regressios fesiplatform-specific testing.



RRL 9 — Installation user interface provided
A user interface guides the installer through tps needed to build, configure, and install the
software.

6 Intellectual Property Issues

Developer in this section is either the person wkweeloped the software or the organization
responsible for developing the software. This neéedse reduced to fewer levels with more
attention to the process (steps) of releasingdftevare from the developer’s organization. 1)
No rights, 2) in process, 3) determined.]

RRL 0 — No developer has been identified, rights are werdehed
Product developers have not been identified artiesaghts are undetermined.

RRL 1 — Product developers have been identified, but nasigave been determined.
Product developers have been identified and tlespansibilities have been determined, but they
have not considered or determined the rights feptioduct.

RRL 2 —Developers are discussing rights that comply withirtorganizational policies.
Relevant policies of developers have been revidaedpplicability to intellectual property
rights, but no agreements have been proposed. Raghtnot specified.

RRL 3 —Rights agreements have been proposed to developers.
Each developer has received a draft intellectugpgnty rights agreement that would result from
cooperative activities with other developers. Rsgiute not specified.

RRL 4 — Developers have negotiated on rights agreements.

Developers have reviewed proposals from each obtimer developers and have proposed an
agreement that addresses any potential conflidgtseiproposed intellectual property rights and
responsibilities for development. A limited riglststement has been drafted and developers may
be contacted to negotiate rights for reuse.

RRL 5 — Agreement on ownership, limited reuse rights, ammbmmended citation.

Developers have agreed on proposed ownershipetinnitellectual property rights for reuse,
and responsibilities. Order of developers’ namespmmended citation, and agreements have
been formalized. Developers may be contacted @imlidrmal statements on restricted rights
for reuse.

RRL 6 — Developer list, recommended citation, and righaseshents have been drafted .
Agreements on development responsibilities, theofislevelopers, a recommended citation, and
intellectual property rights statements, offerimgited rights for reuse have been drafted and are
included in package. Developers may be contactettmn formal statements on restricted
rights or to negotiate additional rights.



RRL 7 —Developer list and limited rights statement incldidie product prototype.

A list of developers, recommended citation, andliattual property rights statements, including
copyright or ownership statements, are embedd#tkisource code of the product, in the
documentation, and in the expression of the soéwa@on execution. These include any legal
language that has been approved by all partidseor riepresentatives, machine-readable code
expressing intellectual property, and concise statds in language that can be understood by
laypersons, such as a pre-written, recognizabdmsie. Brief statements are available describing
limited rights, restrictions, and conditions fouse. Developers may be contacted to negotiate
additional rights.

RRL 8 — Recommended citation and intellectual propertytaghiatement included in product.
All parties have reviewed the list of developeesammended citation, and intellectual property
rights statements, including limited rights for seuin the product to ensure that all interests are
represented and that the statements conform toitts¢itutional policies and agreements. Brief
statements are available describing unrestricggdsiand any conditions for reuse. Developers
may be contacted to obtain formal rights statements

RRL 9 — Statements describing unrestricted rights, recondee citation, and developers
embedded into product.

Multiple statements are embedded into the prodestmbing unrestricted rights and any
conditions for reuse, including commercial reuse] #ihe recommended citation. The list of
developers is embedded in the source code of tiupt, in the documentation, and in the
expression of the software upon execution. Thédl@uteial property rights statements are
expressed in legal language, machine-readable aaddan concise statements in language that
can be understood by laypersons, such as a premyniecognizable license.

General comments:
» Consider if the following areas are addressedenkhstatements:

o Who is allowed to use the software (as a user)?

o Who can "reuse” the software as a component af toeie?

o Does reusing the software obligate the reuserrtaiceactions (make their
modification source available or open source, nibke entire code open
source)?

o Can parts of the software be reused freely, whhers are restricted?

7 Standards Compliance

[This section should be reviewed by the standardsp This section refers to both software
and/or the software development process.]

RRL 1 — No standards compliance
Neither the software nor the software developmentgss adhere to any identified standards
other than those inherent in the software languaggsoyed.



RRL 2 — No standards compliance beyond best practices
The software and software development process adaeleast in part, to some common best
practices, but do not identify or claim compliangéh any recognized standard.

RRL 3 — Some compliance with local standards and bestipesc
The software and software development process gowigh standards and best practices
defined locally by the development organization.

RRL 4 — Standards compliance, but incomplete and untested
The software and software development process pttentomply with recognized standards,
but without verification. Standards compliancehisg untested and may not be complete.

RRL 5 — Standards compliance with some testing

The software and software development process gowith recognized standards, but
verification of compliance is incomplete. Standacdmpliance may not be followed by all
components.

RRL 6 — Verified standards compliance with proprietaryng@ds
The software and software development process gowigh specific and proprietary standards
(such as Windows GUI) and compliance with thoseddeds has been verified through testing.

RRL 7 — Verified standards compliance with open standards
The software and software development process gowigh specific open standards and
compliance with those standards has been verifieigh testing.

RRL 8 — Verified standards compliance with recognized dhads

The software and software development process gowigh internationally recognized
standards such as W3C, XML, XHTML, WAI, IP for Wedr; ANSI/ISO (C/C++), JCP (Java),
for software; and CMMI, IEEE Software Engineerintgi®lards for development process.
Standards compliance has been verified througmggdiut not by an independent testing
organization.

RRL 9 — Independently verified standards compliance wattognized standards

The software and software development process gowigh internationally recognized
standards. Independent and documented standargidi@oce verification is included with the
software. The development organization maintaiasddrds compliance in its development
process through regular testing and certificatromfan independent group.

Notes:
1. Proprietary standards such as Windows GUI are nenyconducive to universal reuse
2. openstandards.org has a great listing of standatelgant to the open source community



8 Verification and Testing
[Define the terms verification and testing.]

RRL 1 — No testing performed.

Ideas have been translated into software developagamples might include studies of
development languages, prototype, diagram of iaterxfRequirements have not been verified,
and there is no formal test mechanism in place.

RRL 2 — Software application formulated and unit testiegfprmed.

Software application compiles, and executes witbtvkminputs. For example, a prototype
application where there is no testing or validatosupport the software, but only testing to
demonstrate a prototype. Requirements may nonbézed yet, or overall testability of the
software determined.

RRL 3 —Testing includes testing for error conditions aaddiing of unknown input.

Software applications have been ‘white box’ tesféds includes both known and unexpected
inputs to the application. This level of testing leeen incorporated into the build and/or
deployment mechanism.

RRL 4 — Software application demonstrated in a laboratorntext.

Following successful testing of inputs and outptlte,testing has integrated an application to
establish that the “pieces” will work together ttheeve concept-enabling levels. This validation
has been devised to support the concept that wamifated earlier, and is consistent with the
requirements of potential system applications. Vdlelation is relatively “low-fidelity”

compared to the eventual system — it could be ceegbof ad hoc discrete components in a
laboratory; for example, an application tested withulated inputs.

RRL 5 — Software application tested and validated in afdatory context.

The fidelity of the software application testingsheot been demonstrated. The software
application must be integrated with reasonablyisBalsupporting elements so that the total
application (component level, sub-system levekystem level) can be tested in a “simulated” or
somewhat relevant context. At this level, issuehsas scalability, load testing, and security are
addressed when applicable.

RRL 6 — Software application demonstrated in a relevanteod.

The fidelity of the software application testingsheot been demonstrated. The software
application must be integrated with existing eleta@md interfaces so that the total application
(component level, sub-system level, or system Jesagi be tested and validated in a relevant
context. At this level, issues such as number efsiand operational scenarios, as well as load
testing and security are addressed if applicable.

RRL 7 — Software application tested and validated in evaht context.

The software application testing meets the requergmof the application that apply to the
software when it is to be delivered or installedeBoftware application has been tested in the
lab so that the application can be validated #zeifsoftware were delivered for use in another
context. At this level, all issues have been resbiregarding security and operational scenarios.



RRL 8 — Software application “qualified” through test ageimonstration (meets requirements)
and successfully delivered.

The software has passed testing and meets alreegents of the software, with the additional
testing of the software delivery and installation ¥arious applications.

RRL 9 — Actual software application tested and validatedugh successful use of application
output.

Demonstrable that for any application of the sofey#esting shows the software meets all
defined requirements. [Talk about the rigorousinggprocess itself, against a set of testable
requirements. This could be independent.]

General comments: Business Readiness Rating
(http://www.openbrr.org/wiki/index.php/Downlogdsformation on Performance includes some
testing information that may help with this topic.

9 Modularity

RRL 1 — Not designed with modularity
Research or prototype-grade code written with reagihe for organizing code in terms of
functionality for modularity or reuse.

RRL 3 — Modularity at major system or subsystem level only

No clear distinctions between generic and solusipeeific functionality; few internal functions
accessible by external programs (i.e., closed tactire), limited distinction between visible
functions; code is organized into a primary systieat provides general functionality and one or
two subsystems that each provide multiple, unrd|dtenctions, requiring additional
modularity?; code within each module contains madgpendent logical paths.

RRL 5 — Partial segregation of generic and specific fumzlay

Top to bottom structuring into individual compongttiat provide functions or services to
outside entities (i.e., open architecture); intefuactions or services documented, but not
consistently; modules have been created for gefarations, but modules have not been
created for all of the specified functions; codéhm each module contains many independent
logical paths.

RRL 7 — Clear delineations of specific and reusable corapts)

Organization of all components into libraries oveme registries; consistent documentation of
all libraries as APIs or standard web service fats; modules have been created for all
specified functions and organized into librariehwgonsistent features within interfaces; code
within each module contains many independent ldgiaths.



RRL 9 — All functions and data encapsulated into objectotessible through web service
interfaces

All functions and data encapsulated into objectsamessible through web service interfaces;
consistent error handling; use of generic exterssiorprogram languages for stronger type
checking and compilation-time error checking; seggiavailable externally, e.g., in “third-party”
service workflows; code within each module contdevs independent logical paths.

Notes:
Business Readiness Ratirmtp://www.openbrr.org/wiki/index.php/Downloddsformation on
Scalability may relate to extensibility and/or méadity.

General Topic Level Comments

Business Readiness Ratirmtp://www.openbrr.org/wiki/index.php/Downlogdgformation on
Security may help us factor that into our topiceley since we got feedback suggesting we
consider the issue of security. Their quantitakdxesls may help in some of our topic areas, too,
noted above.

The verb tense should be consistent across alt topas and across all levels.

Some of the more general feedback received mayswed explanatory text to address them.
Trying to fit it directly into the topic area leemay not work very well. Examples:
» Use vs. reuse — how we classify the differencetaawd much of each we’re considering

o Can use the WG definitions posted on the portal svtebat
http://lwww.esdswg.org/softwarereuse/Resourcestijineuse-definitions/

o “In general, if you have acquired (or used) a safendevelopment asset from
someplace else that otherwise you would have writteirself then you have
experienced the benefit of reuse.”

* Is open source software a pre-requisite for reuse?

o My feeling is no, you can do black-box reuse obmpiled library or executable,
for example.

0 However, reuse can be easier with open source a&hand perhaps open source
software can automatically start at, say, RRL &ftect that.

» Defining the target audience (e.g., developers amagers?)

o | think we’re trying to cover both.

o Developers might prefer to use the detailed topiels.

o0 Managers might prefer to use the overall summarngise

» Different types of reuse — black box, white box, \re, reuse after long periods of
time, etc.

o | think we need to account for at least black ahievbox reuse.

o Perhaps reuse in virtual machines is a factor wiplairtability? I'm not sure it's
something that cuts across all topic areas.



0 Reuse after long periods of time seems to be mioagyceservation or life cycle

issue.
Cost and risk are considered important; how dottfi@stor in?

0 To some extent, these are implicitly covered bylélels: lower levels carry
more cost and risk than higher levels.

o0 Should reuse readiness, which seems more of aitatlconcept, explicitly
include factors like cost and risk, which may depen the project reusing the
software?



Draft Reuse Readiness Levels

RRL 1 — No reusability; the software is not reusable.
Little is provided beyond limited source code oeqpmpiled, executable binaries. There is no
support, contact information for developers or tsgfor reuse specified, the software is not
extensible, and there is inadequate or no docuriienta

RRL 2 — Initial reusability; software reuse is not preak

Some source code, documentation, and contact iattwmare provided, but these are still very
limited. Initial testing has been done, but reugghts are still unclear. Reuse would be
challenging and cost-prohibitive.

RRL 3 — Basic reusability; the software might be reusddyleskilled users at substantial effort,
cost, and risk.

Software has some modularity and standards congajasome support is provided by
developers, and detailed installation instructians available, but rights are unspecified. An
expert may be able to reuse the software, but gensers would not.

RRL 4 — Reuse is possible; the software might be reusechdst users with some effort, cost,
and risk.

Software and documentation are complete and urshetagble. Software has been demonstrated
in a lab on one or more specific platforms, infregupatches are available, and intellectual
property issues would need to be negotiated. Risysessible, but may be difficult.

RRL 5 — Reuse is practical; the software could be reugendst users with reasonable cost and
risk.

Software is moderately portable, modular, exterslalaind configurable, has low-fidelity
standards compliance, a user manual, and has ésted in a lab. A user community exists, but
may be a small community of experts. Developers begontacted to request limited rights for
reuse.

RRL 6 — Software is reusable; the software can be reusedds¢ users although there may be
some cost and risk.

Software has been designed for extensibility, madhyi and portability, but software and
documentation may still have limited applicabilifyutorials are available, and the software has
been demonstrated in a relevant context. Developsyg be contacted to obtain formal
statements on restricted rights or to negotiatétiaddl rights.



RRL 7 — Software is highly reusable; the software can hused by most users with minimum
cost and risk.

Software is highly portable and modular, has higlelity standards compliance, provides auto-
build installation, and has been tested in a releeantext. Support is developer-organized, and
an interface guide is available. Software and damntation are applicable for most systems.
Brief statements are available describing limitéghts for reuse and developers may be
contacted to negotiate additional rights.

RRL 8 — Demonstrated reusability; the software has beeseeby multiple users.

Software has been shown to be extensible, and k&h lualified through test and
demonstration. An extension guide and organizgi@mwvided support are available. Brief
statements are available describing unrestrictgdgifor reuse and developers may be contacted
to obtain formal rights statements.

RRL 9 — Demonstrated reusability; the software is beingeel by many classes of users over a
wide range of systems.

Software is fully portable and modular, with all pappriate documentation and standards
compliance, encapsulated packaging, a GUI instadled a large support community that

provides patches. Software has been tested amthtedi through successful use of application
output. Multiple statements describing unrestriaigtits for reuse and the recommended citation
are embedded into the product.



